众所周知,对于食品、医药等领域而言,发酵是生产中的重要环节。而溶氧(DO)在微生物及细胞的发酵中,又是好氧类发酵系统中关键的参数之一,能直接影响发酵的稳定性和生产成本。
氧气不易溶于水,实验室发酵罐中的发酵液和微生物代谢产物更是会降低氧气在发酵过程中的溶解度。因此,控制DO不仅是为了增长发酵中的有益代谢产物,更是实验降本增效的方案。
实验室发酵罐DO电极工作原理
在使用过程中,溶解氧通过薄膜到达阴极表面时会被电解分离,释放出的电子会在电解液中形成电流。由于透过膜的溶氧含量与水中的溶氧含量成正比,所以在溶氧含量不同的情况下,电解液中形成的电流强度是不同的,电流强度可以通过电极来监测。电极监测到的电流强度可以根据法拉第(Faraday)定律换算成特定的氧气浓度,经过补偿温度和气压得到最终值。
实验室发酵罐DO调节原理
在发酵过程中,DO浓度与其它环节参数关系相对复杂,受到发酵罐中多方因素的影响和制约,控制DO则是为了让它能稳定在期待值内。一般情况,我们会通过通气、搅拌和补料等手段来控制发酵罐中的DO。
(通气控制)
(搅拌控制)
(补料控制)
以霍尔斯(HOLVES)实验室发酵罐为例,用户可以设置DO与STIR控制、FEED控制多级级联,然后通过稳定的RS-485通讯,发酵系统HF-Control 会实时接收电极传输数据,并采取PID逐级调控相关参数,以达到并稳定在设定DO值内。
本篇文章带大家了解了实验室发酵罐的溶氧如何控制,同时上文中也提到溶氧会受到很多因素的影响,温度因素也是其中之一,所以下篇会为大家讲解实验室发酵罐的罐温控制,敬请期待。
本站是霍尔斯(HOLVES)品牌网站https://www.bjholves.com.cn/,提供不同类型的行业资讯、技术知识、解决方案,我们研发和生产了多款新型实验室发酵罐、生物反应器、切向流超滤等设备,满足从实验到工业生产等各个需求环节,欢迎您垂询。